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Stochastic resonance in a system of ferromagnetic particles
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We show that a dispersion of monodomain ferromagnetic particles in a solid phase exhibits stochas-
tic resonance when a driven linearly polarized magnetic field is applied. By using an adiabatic
approach, we calculate the power spectrum, the distribution of residence times, and the mean first
passage time. The behavior of these quantities is similar to the behavior of corresponding quantities
in other systems where stochastic resonance has also been observed.

PACS number(s): 05.40.+j, 41.90.+e, 82.70.Dd

I INTRODUCTION

The phenomenon known as stochastic resonance (SR)
was first predicted by Benzi et al. [1] and consists of the
coherent response of a multistable stochastic system to a
driven periodic signal. Up to now, SR has been observed
in diverse physical situations as in lasers, in electron para-
magnetic resonance, or in free standing magnetoelastic
beams. The description of the phenomenon as well as its
fundamentals and applications are included in the recent
reviews by Moss [2] and Wiesenfeld and Moss [3] (see also
Refs. [4] and [5]).

Our purpose in this paper is to show theoretical pre-
dictions about the occurrence of the phenomenon in a
system of ferromagnetic monodomain particles dispersed
in a solid phase (a crystalline polymer, for example) when
an alternating magnetic field is imposed. In a ferro-
magnet the interdomain walls are of the order 10~% cm,
so particles whose size is of this order of magnitude or
less may be considered monodomains [6]. Such parti-
cles are always magnetized to the spontaneous magne-
tization M,. For these fine ferromagnetic particles the
energy consists of contributions coming from two com-
peting mechanisms that tend to orient the magnetic mo-
ment: the potential energy of the field and the energy of
anisotropy. The energy is therefore a nonlinear function
of the orientation angle, which is precisely the stochastic
variable. This fact was already taken into account by
Néel [7] to estimate the relaxation time for the magnetic
moment in magnetic powders. As we will show, under
certain conditions the ferromagnetic particle constitutes
a bistable stochastic system, with the external field pro-
viding a periodic contribution.

The stochastic behavior of systems of ferromagnetic
particles was discussed in Ref. [8], where a Fokker-Planck
equation for the probability density of the orientations
of the particles was derived. This equation is related to
the Landau-Gilbert equation [9,10] in which a stochastic
source accounting for Brownian motion of the magnetic
moment is added. The procedure is restricted, however,
to the case in which the external magnetic field is con-
stant in time. This theory provides the framework for our
subsequent analysis and consequently must be extended
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to the case of a time-dependent magnetic field.

We have organized the paper in the following way. In
Sec. II we introduce our model and from the Gilbert-
Landau equation we establish the kinetic equation for the
probability distribution of the magnetic moment. In Sec.
III, by using an adiabatic approximation, we compute
the power spectrum of the fluctuations of the magnetic
moment, while, in Sec. IV, and within the framework of
the same approach, we calculate the probability distribu-
tion of residence times and the mean first passage time.
Finally, in Sec. V we give numerical values of the char-
acteristic parameters of our system and discuss our main
results. Additionally, we show that because of the very
short time scale that rules the relaxation of the system,
the adiabatic approach is justified.

II. DISPERSION OF FERROMAGNETIC
PARTICLES

We consider an assembly of single-domain ferromag-
netic particles dispersed in a solid phase at a concentra-
tion that is assumed to be low enough to avoid magnetic
interactions among them. When we apply an external,
uniform, ac magnetic field I:7(t) = ﬁgsinwot, ﬁo being
the magnetic field strength and wy its angular frequency,
the energy of each particle splits into contributions com-
ing from the external field and the crystalline anisotropy
[6] and is given by

U(t) = =i - H(t) + Ko Vp(r - 8)? . (1)

Here m = mym is the magnetic dipole moment; m, =
M,V, is the magnetic moment strength, with M, the sat-
uration magnetization and V,, the volume of the particle;
K, > 0 is the anisotropy constant; and § is a unit vector
perpendicular to the symmetry axis of the particle.

- The dynamics of the magnetic moment 7 is governed
by the Gilbert equation [10,11]

%{Z—Tzr?zx(Heg+Hd) , @)
where v (= —e/mc) is the gyromagnetic ratio. From (2)
one may identify the two mechanisms responsible for the
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variation of m. The effective field

_, oUu = KoV, . .

Heﬁz_a—fﬁ- =H(t)—-2m—sp(ms)s, (3)
which implies a Larmor precessional motion of m and the
mean field

Hd = _ﬂE, (4)

which introduces a damping whose microscopic origin lies
in the collisions among the electrons participating in the
formation of the magnetic moment of the domain. In Eq.
(4) n is a damping coefficient.

Equation (2) can be solved self-consistently giving

dm

E:JLxﬁ'L—khvﬁxﬁegxﬁ'L, (5)
where J7, = —my, gﬁeﬁ is the Larmor angular frequency

of the precessional motion executed by the magnetic mo-
ment of a dipole. Moreover, we have introduced the

quantities
Y
P S— 6
Y7 ma(L+ Pm2y?) (6)
and
2
he ™M (7)

(1 +n?mZy?)

When the external field is constant, the precessional mo-
tion is extinguished in a time scale 7o = (m hHeg) !, ob-
tained by a comparison of the left-hand term and the sec-
ond right-hand term in (5). Thus when Brownian motion
is absent, the 7. become parallel to ﬁeﬂ for times larger
than 79. Keeping only first-order terms in the damping
coefficient, one obtains the Landau equation [9]

dd—T:—'yﬁegxr?L+/\ﬁzxﬁeﬂxrﬁ, (8)
where A may be identified as ny2.

The presence of thermal noise was considered by
Brown [8] by simply adding the random field H, to the
Gilbert equation (2). This equation thus becomes a non-
linear Langevin equation with multiplicative noise

—27 = x (Heg + Ha + H,) . (9)

The random term constitutes a Gaussian stochastic pro-
cess with zero mean and a fluctuation-dissipation theo-
rem given by

(H, (¢ H, (' + 1)) = 2kpTnlé(t) , (10)

where T is the unit tensor.

Following the standard procedure, it is possible to de-
rive the Fokker-Planck equation related to (9). One then
obtains [8,12]
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%_..
ot

- 1 5 /U@
G =—5-5 4§ (F(T) n lm/)) (1)
where (7, t) is the distribution function for the orien-
tations of the vector 7 and § = 7 x ;,%; is the rotational
operator. From this equation we infer the appearance of
the relaxation time 7 = (—2kgTh)~!, corresponding to
the time scale in which one achieves the stationary state
where the probability flux is constant.

If the external magnetic field is applied along the di-
rection of the easy axis of magnetization, the problem
posed by Eq. (11) has an axial symmetry. In this case,
the energy of the system can be written as

U = —m, Hosinwotcost + K,V,sin’6 . (12)

Therefore, it turns out that for Hy < H., with H,
(= 2K,V,/m,) a critical field, the system is bistable.
This critical field coincides with the coercive field of fer-
romagnets. In view of (12) the potential energy has two
minima for the values of the angle 0 and 7 denoted by
0, and 6_, respectively, and one maximum at the angle
0., which is determined from the condition

cosb,, = ——ggsinwot = —e(t) . (13)

c

Given that Ho/H. < 1, one has the inequality 0 < 6, <
7. The energy at the three singular points is then ex-
pressed as

Up =U(0+) = FmsH.e (14)
and
Up =U(0,,) = 1/2mH (1 +€?) . (15)

Note that the phase difference between U, and U_ is
equal to 7 and that the position of the maximum 6,, os-
cillates in phase with U,. In Fig. 1 we have represented
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FIG. 1. Normalized energy U/m H, for (a) wot = 0, (b)
wot = w/2, and (c) wot = 37 /2.



51 STOCHASTIC RESONANCE IN A SYSTEM OF . .. 4161

the potential given through Eq. (12) in a cycle of the
external magnetic field. As follows from the figure, the
effects of the modulation are to vary the relative depth
of the two wells of the potential and also to change the
barrier height, which corresponds to additive and para-
metric modulation, respectively [2]. For the particular
case we have considered, Eq. (11) becomes

o 1 0., (1 08U 8
o _ 1 0 ELEVLUCCA . (16
T3¢ = sinf 96 {31n0 (kBT¢ a0 * aa¢>} (16)

This equation will constitute our starting point in the
analysis of the stochastic resonance in the following sec-
tions.

III. POWER SPECTRUM

Our purpose in this section is to compute the power
spectrum of the fluctuations of the angle 6, which, ac-
cording to the Wiener-Khinchin theorem, is related to
the intensity of the fluctuations. To this end we will
first proceed to introduce some assumptions that imply
a reinterpretation of the stochastic process 6(t). When
t > 7 (a situation in which the system has reached its
stationary state) and for (U,, — U+)/kgT high enough,
we can reformulate the problem in terms of the variable
z = cosf, assumed to be discrete, taken on the values
x4 = +1. The corresponding probability distribution is
then given by the function

p(m, t) = n+(t)5m,m+ +n_ (t)‘sm,a:m ) (17)

where

Om
ne(t) =1 —n_(t) = L $(6,8)sin(6)d0 . (18)

In these equations my are the probabilities to find the
magnetic moment around the minima + at time ¢. There-
fore, n4 can be interpreted as the fractional population
at the minima +. From the Fokker-Planck equation it
is then possible to derive the rate equations [13,14] for
these variables. They read

d d
azn+ = —En_ =W_n_ — W+n+
— —(W_ + Wi)ny + W, (19)

where W, and W_ are the transition rates corresponding
to the jumps (+) — (—) and (4) «— (—), respectively.
These transition rates were computed by Brown in the
case of a constant external field [8]. He obtained

Wi = cyexp[—(Um — Ux)/kBT] , (20)
with
Ccy = hki(km/ZkaT)l/zsinOm s (21)
where
d2U
ko= Zn(0=0)=m H(1+e) (22)

d2U
k_ = W(O = 71') = mch(l - E) ’ (23)
and
ko = moHo(1—€2) . (24)

In this case, one may identify from Eq. (19) the relax-
ation time to the equilibrium state between the wells, i.e.,
when the probability current is zero. This time scale, re-
ferred to as the Néel relaxation time [7,8], is defined as
™ = (Wy+W_)"L

The extrapolation of Egs. (20)—(24) to the case con-
cerning us is accomplished by assuming £(t) as given by
Eq. (13). As obtained by McNamara and Wiesenfeld
[15], the solution to the rate equations is found to be

t
ne(t) = 570 [naatto) + [ Wel)at)ie| . (25)
to
with
t
sy = | [T e w-@la] . o)
In order to compute ny we perform a Taylor expansion

of the transition rates with respect to the parameter e.
Up to the second order in this quantity we obtain

1
Wi = §(a0 + ajpie + o + - - ) (27)

and

Wi+ W_ =ap+ o+, (28)

where pi = +1. The coefficients of these expansions are
given by

1 _m_ 1 30 _
ja=Wale=0) = —Lolep(-) . (29)
loqp:t = iWj:(zs =0) = ﬁ‘as/z(l + 20)exp(—o) ,
2 de VrT
(30)
and
1 1 d?
Eazp:t = EEW:E(E = 0)
1
= ——0%/2exp(—0) (402 + 20 — 2) , (31)

T

where we have defined the parameter ¢ = K,V,/kpT,
comparing anisotropy and thermal energies.

The averaged power spectrum in a period of the input
signal is written as

27 /wo

Sw) = %/0 S(w, t)dt
wo 27 [wo oo

- dt / du (2(t)2(t + u))exp(—iwu) .

27 Jo -
(32)
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Using the solutions (25), the approximations (27) and
(28), and the expressions (29)—(31), it is possible to com-
pute the correlation function (z(t)z(t + u)) and from it
S(w), which for positive w reads

$() = |1- 2e203(1 + 20)2e7 %0 803/2e=7

nr2 (425 +ud) | var (455 + w2)
4e203(1 + 20)2e2°

T2 (4———"3:_2" + w%)

O(w — wp) . (33)
T2
This equation clearly shows a resonant peak at w = wy,

which indicates that the fluctuations of this mode diverge
as a 0 function. From Eq. (33) one can compute the
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FIG. 2. Signal to noise ratio Isnr in units of \/7/27 as a
function of o (a) for o = 0.3 and (b) eo = 0.1. In both cases
woT = 0.1.

signal to noise ratio Isnygr as a function of the parameter
o. We obtain

VT | €20%/%(1 4 20)%e~°
?7-— 1_ 2303 (1+20)%e—27
w2 (4 »"—2—3::20 +u§)

ISNR(U') = (34)

In Fig. 2 we have plotted this function for some values
of the parameter &o.

IV. DISTRIBUTION OF RESIDENCE TIMES
AND MEAN FIRST PASSAGE TIME

In this section we will compute the distribution fuction
of the residence times around the states z, which corre-
spond to the wells of the potential. This can be done by
assuming the existence of an absorbing barrier between
the two minima of the potential energy U(#). Then Eq.
(19) reduces to

d
Eni = —Win:t . (35)

With the initial condition n4 (0) = 1, the solution of (35)
is written as

1 wot

na(t) = exp [—w—o
0

Wi(z)dz] . (36)

The distribution function for the residence times [16,17]
in the well centered at 4, p4(t) then reads

d 1 oot
p+(t) = ——ny = Waiexp [—w—o Wi(z/wo)dz]
0

dt
(37)
Up to order €2 one has
1 2
P+ = 3 oo + a1pre(t) + aze’(t)
1 wot
Xexp ——/ [0 + c1pre(zwo)
wo Jo
+a262(zw0)]dz} (38)

where we have used (27).
finally obtains

From (29)—(31) and (38) one
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0.3/26—0 . 2 2 . 2
Pt = v [1+4 (1 + 20)preosin(wot) + 2(20° + o — 1)egsin (wot)]
X exp {—03/2—6—0 [wot + (1 4 20)p+eo[l — cos(wot)] + (202 + o — 1)ed[wot — 1 sin(2wot)]] } . (39)
VTTwo of¥or ™ 3 0

As follows from this equation, the input signal generates
a coherent response of the system in the sense that the
distribution of residence times is modulated by the signal.

Finally, we will proceed to compute the mean first pas-
sage time. Notice that in view of its definition p dt gives
us the probability that the magnetic moment reaches the
absorbing boundary at 6,, coming from the well +, in
the time between t and t + dt. Thus it is easy to find the
mean first passage time (T'), which is given by

@) = [~ ateor ) = [ aenso), (40)

where we have employed (35) and performed an integra-
tion by parts. By using (25)—(27) and (29)—(31) in Eq.
(40) one achieves

o 1
(T) = / dt exp{—_ [aowgt + a1pieo(l — coswot)
0 2(4)0

1
+§a253(w0t - %sinngt)] } . (41)

For g9 < 0.1 we can expand the exponential in terms
of this small parameter. Keeping terms of order £2 and
performing the resulting integral our result reads

1 wo
TY/{(Ty) =1 — = PR A—
(T')/{To) 5 X180 (a0/2)% + +w?
1 5, Gw(z,

+ -3 €

8 1 %(a0/2)? + 4wi][(x0/2)? + wi]
2
Wo

~ Y20 (g /2)[(a0/2)? + 4w3)’

(42)

where (1)) is the mean first passage time in the absence
of the external signal.

V. DISCUSSION

From the results we have obtained in previous sec-
tions, the following comments are in order. In Figs. 2(a)
and 2(b) we have plotted the quantity Isnr/(v/7/27),
obtained from Eq. (34), for the values o = 0.3 and
€0 = 0.1, with woT kept fixed. Note that it should be
woT < 1 because the time scale when the system achieves
the stationary state should be shorter than the period of
the signal, essentially wy'. What Fig. 2(a) makes ev-
ident is that one must take into account the interplay
between the parameters €o and o in order for the dis-
crete probability approach to be valid. Thus, from this
plot we deduce that for €9 = 0.3 our result is correct
whenever o > 6.09. The two vertical asymptotic straight

[

lines originate in two zeros of the noise power spectrum
(33). In the case of a constant external field, Brown (8]
found that the discrete probability approach works fairly
well for o > 0.92. For lower values of ¢, as in Fig. 2(b),
our hypothesis works in the whole range 0> 1. From Fig.
2(b) we see that Isygr exhibits a maximum at a certain
value of the parameter 0. The reason for the appearance
of such a maximum follows from the following argument.
From (14), (15), and (21)—(24) we can write Eq. (20) as

W, = Lmch(l +e—e?— 63)0'1/2

N

xexp[—a(1 +¢ +€?)] . (43)

For o > 1 one has

Wi ~ %mBHcal/ze—”, (44)
which corresponds to an incoherent response. At a very
high temperature, o = 0; consequently W, = 0 and the
behavior of the magnetic moment is completely random.
Thus there should be some finite value of o for which the
coherence between the response of the system and the
signal must be a maximum.

The quantity d. = py/(0%/2¢77//7T) has been plot-
ted in Fig. 3 as a function of the dimensionless time
t' = wot. The picture shows a pattern of peaks, each
one upon a quarter of the period of the input signal 7o.
Moreover, the minima appear for even multiples of 7¢/4.

40 T T T T

FIG. 3. Plot of dy = p4/(0%/%¢”7/\/7T) as a function of
the nondimensional time t' = wot, with g0 = 0.3, woT = 0.1
and o = 10.
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Notice that the first maximun at 7o/4 is higher than the
second one at 379/4. This fact is in good agreement with
the time dependence of the energy observed in Fig. 1.
The well at 6 is deeper for t = 7/4 than for t = 379/4,
which explains the behavior of p; in the first cycle and
so on in the subsequent cycles. For times long compared
to 79, a decay of the function d,, and consequently of
the distribution p4, is observed. The physical meaning
of this behavior is that after a long time all the particles
initially present at this well have already gotten through
the barrier. Essentially, the main feature of this picture
coincides with the corresponding one in Ref. [18].

Finally, with respect to Fig. 4, it is worth to noting
that, as has already been reported [17], the mean first
passage time decreases drastically, in our case, up to a
minimum value. In the absence of modulation this quan-
tity would remain constant.

It is interesting to give some typical values for the pa-
rameters appearing in our calculations. From Ref. [19]
one has m;/V, = 480 Gs, Vp = 5x107!® cm?®, and
K, = 1.9x10° ergcm™3 for magnetite and m,/V, = 1400
Gs, Vp = 2.7x107!® cm3, and K, = 8x10° ergcm—3
for cobalt. On the other hand, an estimation of the
damping parameter appearing in the Gilbert equation
can be found by looking for the value that maximizes
7 [20,21]; one has n = 1/m,y. Then at room tempera-
ture, kgT = 4x107 erg, and v = 2x107 Oe~ s~ we
obtain 7 = 3.1x1071% 5, wy < 3.2x10° 571, 0 = 2.38,
and H, = 791.7 Oe for magnetite and 7 = 4.8x10710
s, wo < 2.1x10° s71, ¢ = 5.4, and H, = 1142.8 Oe for
cobalt. From these data it follows that the range of val-
ues of the external inputs Hy and wg is of experimental
accessibility [19]. Moreover, we conclude that the short
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FIG. 4. Normalized mean first passage time (T")/(To) as a

function of the angular frequency wo of the external field.

time scale involved in our system confirms the validity of
the adiabatic approximation.
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